Good News is Bad News:
Leverage Cycles and Sudden Stops*

Ozge Akinci †
Federal Reserve Bank of New York

Ryan Chahrour‡
Boston College

March 3, 2018

Abstract

We estimate a model with imperfectly forecastable changes in productivity and
an occasionally-binding collateral constraint, and show that it can match a set of
stylized facts regarding the asymmetric risks that surround Sudden Stop events.
Our estimated model indicates that half of productivity shocks are anticipated by
people in the economy. Good news about future productivity raises leverage during
times of expansions, increasing the probability that the constraint binds, and a
Sudden Stop occurs, in future periods. The economy exhibits a boom period in
the run-up to the Sudden Stop, with output, consumption, and investment above
trend, consistent with the data. During the Sudden Stop, the nonlinear effects
of the constraint induce output, consumption and investment to fall substantially
below trend and the trade balance to reverse sharply, as they do in the data.

Keywords: News Shocks, Sudden Stops, Leverage, Boom-Bust Cycle
JEL Codes: E32,F41,F44,G15

*Thanks to Susanto Basu, Giacomo Canadian, Mark Gertler, Marco Machiavelli, Franck Portier,
Albert Queralto, Robert Ulbricht, and seminar participants at Columbia University, the Norges Bank,
Toulouse School of Economics, Banque de France, and the National Bank of Hungary for helpful com-
ments. Thanks to Michael Droste for research assistance. Some of this work was done when Ozge Akinci
was at the Federal Reserve Board. The views expressed in this paper are solely the responsibility of the
authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of New York
or the Federal Reserve System. First circulated as Boston College Department of Economics Working

†Federal Reserve Bank of New York, 33 Liberty Street, New York, NY 10045, U.S.A. Telephone:
212-720-2567. Email: ozge.akinci@ny.frb.org.

Email: ryan.chahrour@bc.edu.
1 Introduction

In this paper, we show that an estimated real business cycle model augmented with an occasionally-binding collateral constraint and a predictable component in productivity\(^1\) can match observed patterns in the data surrounding Sudden Stop events in emerging economies. Figure 1 illustrates these patterns in a seven-year window around identified Sudden Stop events.\(^2\) During the median Sudden Stop episode: (i) Gross Domestic Product (GDP) and private consumption fall about 4 percentage points below trend; (ii) private investment falls 20 percentage points below trend; (iii) the trade balance-to-GDP ratio experiences a reversal of about 6 percentage points; (iv) asset prices fall, and; (v) the country’s external debt-to-GDP ratio drops by almost 10 percentage points. In the run-up to these events, the economy experiences a significant trade deficit and rising debt, while GDP, consumption and investment are all above their respective trends.

A predictable component in productivity is important for the model to generate realistic Sudden Stop dynamics. In our model, agents faced with improving growth prospects optimally choose to borrow against their higher future income, increasing their leverage in good times and bringing them closer to an occasionally binding constraint on their debt holdings. On average, the good news is realized, leading to higher long-run consumption and output for the household. However, because good news also brings households closer to the constraint on their leverage, it exposes them to a greater risk that an unfavorable future shock will eventually lead the constraint to bind, thereby leading \textit{ex post} to a worse outcome than they might otherwise have realized had all shocks arrived as surprises. In this sense, good news leads agents to engage in optimistic behavior that is both rational, since it is validated on average, but also risky, since it reduces the agent’s ability to respond to negative shocks that might arrive in the future.

In order to establish that news shocks are quantitatively important for generating Sudden Stop events, we estimate our model using a simulated method of moments that targets the zero and first order autocovariances of emerging economy GDP growth, consumption growth, investment growth, trade balance-to-GDP, and debt-to-GDP.\(^3\) In addition to a shock to the predictable component of permanent productivity, the model is buffeted by

\(^1\)Commonly known as “news” shocks. See Beaudry and Portier (2006) for an early example.

\(^2\)We identify a Sudden Stop as a situation in which the cyclical component of GDP is at least one-and-a-quarter standard deviations below its trend level and the reversal in the trade Balance-to-GDP ratio is at least one-and-a-quarter standard deviations above average. Our definition is similar to the one used in the literature. See, for example, Calvo et al. (2006) and Mendoza (2010). More details on our data and identification strategy are in Appendix A.

\(^3\)Because the estimator targets \textit{unconditional} second moments, it is a good indicator of the overall patterns in the data but is not directly linked to potentially nonlinear Sudden Stop dynamics.
Note: The events are identified as a situation in which the cyclical component of GDP is at least one-and-a-quarter standard deviations below its trend level and the reversal in the trade Balance-to-GDP ratio is at least one-and-a-quarter standard deviations above average. The blue line is the cross-country medians of the forty-two Sudden Stop events identified during the 1980-2015 period. The event window includes three years before and three years after the Sudden Stop events at date 0. GDP, investment, consumption and trade Balance-to-GDP ratio are all HP detrended with a smoothing parameter 10. Tobin’s Q and debt-to-GDP ratios are shown in absolute levels.

Figure 1: Sudden Stop Event Study – Data
exogenous unexpected disturbances to permanent productivity and the country interest rate. We find that the estimated model assigns just over half of fluctuations in productivity to its predictable component. Bootstrapped confidence bands indicate this share lies between 25 and 75 percent, which is both statistically and economically significant.

The empirical properties of debt and the trade balance provide crucial identifying information for our estimated news share. Shocks to the country interest rate can account for some fluctuations in the trade balance ratio, and also its modest counter-cyclicality, but their observed size is not large enough to account for the total volatility of these variables. Mean-reverting (non-permanent) productivity shocks lead to a strongly positive trade balance during economic booms, a pattern so counter-factual that we eliminated such shocks in preliminary estimations. Meanwhile, unanticipated random-walk productivity shocks, which imply a flat profile of future productivity, lead to very small fluctuations in these variables and also cannot match observed volatility. In contrast, news shocks, which imply a rising profile of productivity over time, give agents an explicit reason to adjust consumption and investment today, even when current output is (relatively) unchanged. Thus, they lead to much larger — and more realistic — fluctuations in debt and the trade balance.

After demonstrating that the estimated model fits unconditional moments quite well, we show that it also predicts Sudden Stop events that closely resemble the events identified in Figure 1. In particular, the model predicts booms in output, consumption, investment, asset prices and rising leverage whenever available information indicates high future growth rates for consumption, i.e. after positive news shocks. In the event of a sufficiently negative realization of actual productivity growth—or any other shock—the additional leverage accumulated by agents during the period of optimism causes the leverage constraint to bind, or to bind more strongly, leading to a debt-deflation spiral. Due to the non-linear effects of the binding credit constraint, the model delivers quantitatively realistic crashes in the event of a crisis, including a simultaneous and deep fall in consumption and borrowing that would otherwise be difficult to deliver in an open economy with access to international financial markets.

Existing models of real business cycles, even those with credit market frictions, do not easily generate the set of facts cited above. These models typically require unusually large shocks to account for financial crises and many are designed to study the financial crises in isolation. Moreover, these models have a difficult time generating output and consumption booms in the period leading into the crisis. This is true because good

times are usually associated with improved asset prices and, thus, improved net worth of the borrowers, relaxing borrowing constraints according to most common specifications. Thus financial crises in these models, if they occur, typically occur only after a series of bad realizations of shocks. Anticipated shocks address this challenge by introducing the possibility that borrowing and leverage rise in response to good shocks, and therefore increase during times of expansion. Crises in this case can be triggered by good news followed by a bad realization, and indeed even when no change in fundamental is finally observed, rather than following a sequence of purely negative shocks.

To our knowledge, this paper is the first to estimate a fully non-linear emerging economy business cycle model, and show that it can match simultaneously long run business cycle moments and Sudden Stop dynamics. Guerrieri and Iacoviello (2015) propose a piece-wise linear approach to solve models with occasionally-binding constraints, and Guerrieri and Iacoviello (2017) use this approach to estimate a leverage-constrained model with housing. Mendoza (2010) calibrates a model similar to ours with conventional business cycle shocks to TFP, the foreign interest rate, and price of imported intermediate goods. Using a correlated shock structure, his model also delivers crises of realistic magnitudes. News shocks about future productivity help our model to better fit the patterns of negative trade balance and rising debt that have been the most powerful predictor of financial crises (see Gourinchas and Obstfeld, 2012; Schularick and Taylor, 2012, for examples.)

The literature on anticipated shocks is long, and has generally focused on linearized models. Recently, such shocks have begun to appear in the literature on small open economies. Jaimovich and Rebelo (2008) describe mechanisms that can lead news shocks to generate comovement in a small open economy. Cao and L’Huillier (2014) consider medium-term business cycles caused by innovations that increase expectations of future productivity, which are not always realized ex post. In contemporaneous work, Bianchi et al. (2016) introduce news shocks into a non-linear two-sector endowment economy with the flow collateral constraint of Bianchi (2011). Durdu et al. (2013) have also studied the implications of news in a model with sovereign default. In contrast to Durdu et al. (2013) and Bianchi et al. (2016), our framework incorporates endogenous production and investment, allowing us to study the joint dynamics of output, leverage, investment, and asset prices around Sudden Stop events.

Lorenzoni (2008) and Korinek (2010) also study more theoretical contexts where borrowing is collateralized by assets whose price agents take as given. Akinci and Queralto (2014) develop a model in which banks face an occasionally binding leverage constraint,
and show that it matches a set of stylized facts around banking crisis episodes in the advanced economies. Other related papers include Uribe and Yue (2006); Bianchi and Mendoza (2010); Bianchi (2011); Benigno et al. (2012); Otrok et al. (2012); Bianchi and Mendoza (2013); Fornaro (2015); Ottonello (2015) and Schmitt-Grohé and Uribe (2016).

This paper proceeds as follows. Section 2 lays out the basic model used in our analysis. Section 3 summarizes solution method and estimation procedure. In Section 4, we highlight our main results regarding the drivers of Sudden Stops in the model economy, and examine the model’s ability to match historical Sudden Stop episodes. In Section 5, we examine the robustness of our conclusion about the important of anticipated shocks to several of our calibration choices. Finally, Section 6 concludes.

2 Model

The model economy resembles the small open economy RBC model of García-Cicco et al. (2010), with the addition of a collateral constraint as in Mendoza (2010). The core model, as presented in García-Cicco et al. (2010), is modified to allow for gradual detrending of labor in the utility function, as well as adjustment costs to both labor and debt.

The economy is populated by a continuum of infinity-lived representative firm-household who chooses per-period consumption, hours, investment \((c_t, h_t, i_t) \), the next-period capital stock \(k_{t+1} \), and the amount of debt \(d_{t+1} \), incurred in period \(t \) to be repaid in \(t + 1 \). Agents seek to maximize the discounted expected future flow of utility,

\[
\max_{\{c_t, h_t, i_t, k_{t+1}, d_{t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t U(c_t, \tilde{X}_{t-1} h_t),
\]

subject to the constraints

\[
k_{t+1} = (1 - \delta) k_t + i_t
\]

\[
c_t + i_t = F(k_t, X_t h_t) + \frac{d_{t+1}}{R_t} - d_t - g_t - \chi(R_t - 1) w_t h_t -
\]

\[
k_t \Phi_k \left(\frac{i_t}{k_t} \right) - y_t \Phi_d \left(\frac{\Delta d_{t+1}}{y_t} \right) - X_{t-1} h_{t-1} \Phi_h \left(\frac{h_t}{h_{t-1}} \right) + \tau_t
\]

\[
\kappa \geq \frac{d_{t+1}}{q_t} + \chi R_t w_t h_t
\]

Equation (2) represents a standard process for the evolution of capital, in which capital depreciates at rate \(\delta \).

Equation (3) is the intertemporal budget constraint. The resources available to households are governed by a constant-returns-to-scale technology, \(y_t = F(k_t, X_t h_t) \), requiring
capital and labor and buffeted by a non-stationary labor-augmenting productivity shock, \(X_t \). Each period the household must pay off old debt, may incur new liabilities, and funds an exogenous stream of unproductive government spending, \(g_t \), which we assume to be constant in our baseline model. In addition, the representative firm-household must finance a fraction \(\chi \) of their wage bill in advance of production with working capital loans.

The second line of (3) reflects three costs of adjustment faced by households. The cost of adjusting capital, parameterized by \(\Phi_k(i/k) \), is standard in the literature, and gives rise to a Tobin’s Q pricing relationship for installed capital. Labor adjustment costs, \(\Phi_h(h'/h) \), are included to give firms an incentive to bring forward a portion of any expected future increase in labor demand, giving expected future productivity influence on output today. Finally, the small open economy pays a cost, \(\Phi_d(\Delta d'/y) \), to change its indebtedness position vis-à-vis the rest of the world. For computational simplicity, we assume that adjustment costs paid are returned as a lump-sum transfer, \(\tau_t \), to the household, so that the second row of equation (3) nets to zero in equilibrium.

The key household constraint for the questions of this paper is the occasionally binding collateral constraint given by equation (4). The right hand side of the equation defines leverage in the economy as the ratio of total borrowing (including working capital loans required to hire labor) divided by the agent’s assets, which are given by total capital times its price. The price, \(q_t \), is exogenous to the agent but determined in equilibrium by Tobin’s Q. Similar constraints have been used by many authors, including Kiyotaki and Moore (1997) and Mendoza (2010). In addition to the price of installed capital, consumers take the real wage, \(w_t \), and the world interest rate on external borrowing, \(R_t \), as given. In equilibrium, the real wage is given by \(w_t = -U_{h,t}/U_{c,t} \), which is the equilibrium wage that would emerge in a standard decentralization of our economy.

We note here that the environment incorporates two pecuniary externalities of the type emphasized by Bianchi (2011), and driven by the presence of the prices \(w_t \) and \(q_t \) in the collateral constraint. Mendoza and Smith (2006) and Mendoza (2010) argue that the quantitative effects of these externalities under this specification of the collateral constraint are rather small, and solve their model using a method that ignores them; whether this remains the case in our environment is not immediately clear and our solution method takes them into account.

In this context, the household Euler equations for debt and capital are given by

\[
\lambda_t = \beta E_t \frac{R_t \lambda_{t+1}}{1 - \mu_t} \left[1 - \Phi_d' \left(\frac{\Delta d_{t+2}}{y_{t+2}} \right) \right] + \Phi_d' \left(\frac{\Delta d_{t+1}}{y_{t+1}} \right)
\]

and

\[
\lambda_t = \beta E_t \frac{\lambda_{t+1}}{q_t(1 - \mu_t \kappa)} \left[F_k(k_{t+1}, X_{t+1} h_t) + (1 - \delta)q_{t+1} \right]
\]
where $\lambda_t \geq 0$ is the Lagrange multiplier on the household budget constraint (3) and $\lambda_t \mu_t \geq 0$ is the Lagrange multiplier on the leverage constraint (4). From equation (5), it is clear that when the leverage constraint binds, and $\mu_t > 0$, the result is an implicit interest rate premium of $1/(1 - \mu_t)$, to which households respond by lowering their debt holdings. From equation (6), it similarly apparent that $\mu_t > 0$ lowers the effective return on capital, and that this effect is larger the larger is κ.

Because of these premia, in periods of a binding constraint, agents will tend to lower both debt and capital holdings simultaneously, i.e. engaging in saving in terms of debt, but in dissaving from the perspective of capital holdings. This pattern is the key reason why the model with a constraint is well-suited to deliver the qualitative patterns surrounding Sudden Stop episodes.

To complete our description of the model, we now describe the exogenous processes driving the economy. We restrict our attention to permanent productivity and country interest rate shocks, and choose to abstract from shocks to the stationary component of productivity, government expenditures and consumer preferences, all of which are shown to be important to empirically match the standard business cycle moments of an emerging economy in linear DSGE models (see, for example, García-Cicco et al. (2010)). In this paper, our emphasis is on the quantitative role of the predictable component of permanent productivity in generating Sudden Stop episodes.

The labor-augmenting productivity shock is nonstationary and its growth rate, $\gamma_t \equiv \frac{x_t}{x_{t-1}}$, evolves according to the process

$$\log(\gamma_{t+1}/\gamma) = \rho_x \log(\gamma_t/\gamma) + \epsilon_{t+1-H} + \epsilon_{t+1}^0. \quad (7)$$

In the above equation, γ denotes the long run growth rate of productivity. The shock ϵ_{t-H}^H is a “news” shock, realized and observed by agents at time $t-H$, but not affecting productivity until time t. Conversely, ϵ_t^0 is a productivity shock that is observed and influences productivity contemporaneously.

Consistent with the evidence of Uribe and Yue (2006) and Akinci (2013), we assume that the gross real interest rate that the economy faces in the international markets follows the process,

$$\log(R_{t+1}^*/R^*) = \rho_r \log(R_t^*/R^*) + \epsilon_{R,t+1} \quad (8)$$

where R^* is the long-run level of the interest rate.
For future reference, we collect the vector of exogenous shocks $\epsilon_t \equiv [\epsilon_{t-H}, \epsilon_t^0, \epsilon_{R,t}]'$. The elements of ϵ_t are assumed to be mutually orthogonal, i.i.d., and normally distributed with standard deviations $\sigma_{\text{news}}, \sigma_{\text{surp}}$ and σ_r, respectively.

Under the preferences we assume in the next section, the disutility of labor must be detrended in order for the economy to have a balanced growth path. We generalize the approach taken by García-Cicco et al. (2010) and assume that this term follows an exponential moving average process, $\tilde{X}_t = \tilde{X}_{t-1} - \varphi_{t-1} X_{t-1}^{1-\varphi}$. When $\varphi = 0$, this specification reduces to the case of García-Cicco et al. (2010). Setting φ close to one smoothes the discontinuity in the hours response to productivity shocks that occurs when past productivity shocks affect the disutility of labor, which we find helps the model better match the covariances in the data.

Finally, to ensure that agents borrow in equilibrium, we calibrate the economy so that agents in the domestic economy exhibit a degree of “impatience” relative to world investors. That is, in the long run,

$$\beta R^* \gamma^{-\sigma} < 1. \tag{9}$$

In this framework, the interest rate faced by a small open economy on its external borrowing, R_t, is equal to the world interest rate, R^*_t. In Section 3, we estimate the parameter β that best matches the data.

The complete set of first order conditions for the representative firm-household can be found in Appendix B.

3 Solution and Estimation

3.1 Functional Forms

We specify preferences with a version of the utility function introduced in Greenwood et al. (1988), modified to allow for balanced growth,

$$U(c_t, \tilde{X}_{t-1} h_t) = \left[c_t - \theta \omega^{-1} \tilde{X}_{t-1} h_t^\omega \right]^{1-\sigma} - 1. \tag{10}$$

These preferences eliminate the wealth effect on labor supply by making the marginal rate of substitution between consumption and labor independent of consumption. In equation

5We have considered several different methods of stationarizing debt-to-GDP in the constrained economy; while each requires slightly different parameters to match the data, the consequences for the dynamics of the economy once it is calibrated to match the target moments are remarkably similar.

(10), the parameter σ is the coefficient of relative risk aversion, and ω determines the wage elasticity of labor supply, which is given by $1/(\omega - 1)$.

The production function is given by

$$F(k_t, X_t h_t) = k_t^\alpha (X_t h_t)^{1-\alpha}. \quad (11)$$

In equation (11), the parameter α measures the share of capital in the total output.

Finally, we use a quadratic specification for all adjustment costs. Specifically,

$$\Phi_k (i/k) = \frac{\phi_k}{2} \left(\frac{i_t}{k_t} - \delta \right)^2 \quad (12)$$

$$\Phi_h (h'/h) = \frac{\phi_h}{2} \left(\frac{h_t}{h_{t-1}} - 1 \right)^2 \quad (13)$$

$$\Phi_d (\Delta d'/y) = \frac{\phi_d}{2} \left(\frac{d_{t+1} - d_t}{y_t} - (\gamma - 1) \frac{d}{y} \right)^2 \quad (14)$$

where the parameters ϕ_k, ϕ_h and ϕ_d govern the cost of adjusting capital, labor, and debt, respectively.

3.2 Numerical Solution

Before solving the model, we stationarize the economy by dividing all trending variables by X_{t-1}. The resulting stationary first order conditions and corresponding balanced growth paths are described in Appendix C.

We solve the stationary model using a parameterized expectations approach. The approach consists of using parametric functions to approximate agents’ one-step-ahead conditional expectations as functions of the aggregate state vector. This method is particularly helpful for our context, because it minimizes the additional computational burden created by the introduction of additional states tracking past news that has arrived in the economy. We describe our method in detail in Appendix D.

3.3 Estimation

We calibrate the set of preference and production parameters to standard values when possible. We fix these parameters \textit{a priori} and do not vary them in our calibration. We summarize these parameters in Table 1, and examine robustness to several of these choices in Section 5.

Notably, we fix $\rho_x = 0$ in our baseline calibration. We do this primarily for pedagogical reasons, as autocorrelated growth shocks blur the distinction between news and surprise
Table 1: Calibrated model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concept</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Risk aversion</td>
<td>2.000</td>
</tr>
<tr>
<td>ω</td>
<td>Labor elasticity</td>
<td>1.900</td>
</tr>
<tr>
<td>\bar{R}^*</td>
<td>Long run interest rate</td>
<td>1.085</td>
</tr>
<tr>
<td>α</td>
<td>Capital share</td>
<td>0.330</td>
</tr>
<tr>
<td>δ</td>
<td>Capital depreciation rate</td>
<td>0.126</td>
</tr>
<tr>
<td>\bar{h}</td>
<td>Steady-state hours normalization (implies θ)</td>
<td>0.200</td>
</tr>
<tr>
<td>g/y</td>
<td>Gov. Exp.-to-GDP ratio in unconstrained steady-state</td>
<td>0.110</td>
</tr>
<tr>
<td>γ</td>
<td>Long run productivity growth</td>
<td>1.005</td>
</tr>
<tr>
<td>χ</td>
<td>Share of working capital</td>
<td>0.300</td>
</tr>
<tr>
<td>φ</td>
<td>Degree of slow detrending in the preferences</td>
<td>0.950</td>
</tr>
<tr>
<td>d/y</td>
<td>Debt-to-GDP ratio in unconstrained steady-state</td>
<td>0.536</td>
</tr>
<tr>
<td>$\bar{\mu}$</td>
<td>Implicit premium</td>
<td>0.010</td>
</tr>
<tr>
<td>ϕ_d</td>
<td>Debt adjustment cost</td>
<td>0.500</td>
</tr>
<tr>
<td>ϕ_h</td>
<td>Labor adjustment cost</td>
<td>1.000</td>
</tr>
<tr>
<td>ρ_x</td>
<td>Serial correlation of productivity shock</td>
<td>0.000</td>
</tr>
</tbody>
</table>

In innovations. In particular, a positively autocorrelated surprise growth shock implies a gradually rising path of future productivity. We show later in our Section 5 that this restriction does not play an important role in our findings. Because we have direct observations on country interest rates, R^*_t, we match the variance and autocorrelation of this variable with parameters, $\rho_r = 0.75$ and $\sigma_r = 0.0126$.\(^6\)

Included in calibration table are two long run values that do not map into a single parameter value in the non-linear economy. The first of these, d/y, is the average debt-to-GDP ratio found in our data of roughly 53%. The second is a value $\bar{\mu}$ for the average interest premium, which we fix at 1.0%. To ensure that the estimated model matches these calibrated values, we augment the loss function underlying our estimation (described below) with extremely large weights on deviations from these moments. Adding these additional moments to our estimation procedure is important for anchoring the model near an empirically realistic debt level, and identifying a plausible degree of excess impatience embodied in the parameter β. Since μ_t is latent, and difficult to match to

\(^6\)More details about the measurement of the country interest rates and the estimation of the autoregressive process are presented in Appendix A.
Table 2: Estimated model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concept</th>
<th>Estimate</th>
<th>5%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_k</td>
<td>Capital Adjustment Cost</td>
<td>1.505</td>
<td>1.196</td>
<td>1.782</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.915</td>
<td>0.914</td>
<td>0.917</td>
</tr>
<tr>
<td>κ</td>
<td>Collateral Constraint</td>
<td>0.446</td>
<td>0.371</td>
<td>0.471</td>
</tr>
</tbody>
</table>

Exogenous Processes				
σ_{news}	Std. Dev. of Perm. News shock	0.039	0.024	0.046
σ_{surp}	Std. Dev. of Perm. Surp. shock	0.035	0.029	0.042

An observable quantity, we choose a value that is consistent with realistic Sudden Stop events and show robustness to our choice in a later section.

The rest of the parameters, including volatility of anticipated and surprise productivity shocks, are estimated using a (simulated) generalized method of moments. We estimate these remaining parameters, $\Omega = \{\phi_k, \beta, \kappa, \sigma_{news}, \sigma_{surp}\}$, by targeting the first and second autocovariances of output growth, consumption growth, investment growth, the trade balance-to-GDP ratio, and the debt-to-GDP ratio. Altogether, our targets consist of 40 independent moments from the data.

In our data sample underlying our target moments, we have 31 countries, with samples of roughly 36 years each. We compute the autocovariance structure for each of these countries and then target the mean across countries for each moment. Since our actual data is unbalanced, we compute our target moments using the maximum available data sample within each country, for each pair of variables. We denote the vector of these target moments by the 1×40 vector, M_{data}.

For a given set of parameters, Ω, we then use the model to generate a simulation of $T=5,000$ years from the model economy. We then compute the model analogue moments by dividing the long simulation into “synthetic” countries, each with 36 years of data, the mean of which we collect in a 1×40 vector, $M_{mod}(\Omega)$. Our GMM estimator is then

$$\hat{\Omega} = \arg \min_{\Omega} [M_{data} - M_{mod}(\Omega)] V [M_{data} - M_{mod}(\Omega)]', \quad (15)$$

where V denotes a diagonal matrix used to weight deviations from the target moments.

As a default, we weigh the difference between the model moments and targets according to the inverse variance of the target moment across (all available) countries for that moment in the true data. In several experiments we performed, the estimated model with
these default weights tended to under-predict the variances of consumption, investment, trade balance, and debt in favor of better matching cross variance terms. Because these second moments are salient in the related literature, our baseline estimation places two times the default weight on these variances. We show in Section 5 that this choice does not drive our results.

After formulating the weighted loss function, we estimate the model parameters using Matlab’s lsqnonlin least-squares optimizer. In experiments on a linear version of the model, we found that this optimizer did very well finding global optima with relatively few evaluations of the loss function. We have also re-estimated the economy from different starting points, and find that the procedure delivers the same result each time. Hence, we feel confident that the parameters we report are indeed the best fitting parameters in the parameters space.

Our standard errors are based on 240 bootstrapped samples. In each of these samples, we draw with replacement a random selection from the 31 countries in our original data. We then reestimate the model using the exact same procedure used to estimate the baseline economy, initializing each search at our baseline estimates. We find that the share of news, defined as $\sigma_{news}^2/(\sigma_{news}^2 + \sigma_{surp}^2)$, ranges between 24.9% and 69.8% within the 90% confidence region of the simulations.

In addition to estimating the baseline economy, we also estimated several different specifications, including a version of the model in which we did not allow for productivity to have an anticipated component. We discuss this restricted estimation at length in Section 4, and additional robustness tests in Section 5.

4 Results

In this section, we present our estimation results and argue that news shocks play an important role in helping the model match the data. We then show that news shocks also play an important role in driving dynamics around Sudden Stop events and explore their importance in driving endogenous risk in the economy.

4.1 Long-Run Business Cycle Moments

Tables 3 provides numerical values for several key moments in the data, the baseline model economy, and to the corresponding model economy estimated without news. Both estimated models do a fairly good job at matching the empirical standard deviations of output, investment, and consumption growth. Large differences emerge however, in the
Table 3: Comparing Model and Data: Business Cycle Moments

<table>
<thead>
<tr>
<th></th>
<th>g^Y</th>
<th>g^C</th>
<th>g^I</th>
<th>TBY</th>
<th>DY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>4.1</td>
<td>5.0</td>
<td>16.3</td>
<td>4.5</td>
<td>19.4</td>
</tr>
<tr>
<td>Baseline Model</td>
<td>4.8</td>
<td>4.3</td>
<td>15.6</td>
<td>4.0</td>
<td>10.6</td>
</tr>
<tr>
<td>Model w/o News</td>
<td>4.4</td>
<td>4.7</td>
<td>15.2</td>
<td>2.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Auto-Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Baseline Model</td>
<td>0.2</td>
<td>0.1</td>
<td>-0.2</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Model w/o News</td>
<td>0.2</td>
<td>0.1</td>
<td>-0.3</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Corr. with g^Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
<td>-0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>Baseline Model</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>-0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Model w/o News</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Note: Empirical second moments are unconditional mean values across the countries in our sample after dropping the two highest and two lowest outliers for each moment. Model implied second moments are unconditional means across all pseudo-countries simulated using the estimated model. Variables g^Y, g^C, and g^I denote the growth rates of output per capita, consumption per capita, and investment per capita, respectively. TBY and DY denote the ratio of the trade balance and debt to output, respectively.

The ability of the no-news model to match the estimated volatility of the trade balance and of debt-to-GDP, with the estimated no-news model significantly under-predicting these values.

In addition to overall volatility of the trade balance and debt ratios, the correlation between output growth and consumption growth is counterfactually high in the no-news model, while the trade balance is too negatively correlated with output growth. News helps solve the first of these problems by introducing an additional reason for consumption to fluctuate even when productivity does not, and the relatively mild correlation between output growth and the trade balance-to-output ratio reflects the same force, as households borrow to finance the expectations-driven component of consumption.

Figure 2 compares the autocovariance structure of the data with that implied by the estimated model. Solid lines represent means from the sample of 31 countries, while dashed lines represent the corresponding means across the 138 ($\approx 5000/36$) artificial samples from the simulated model. Light-blue bands depict the empirical range of these
Figure 2: Unconditional Autocovariances – Model versus Data
Figure 3: Unconditional Autocovariances of TB and DoY – Model w/ and w/o news covariances, after dropping the two highest and lowest values for each point plotted.\(^7\) Remarkably, the model falls within the empirical confidence bands nearly everywhere, indicating a surprisingly good fit for such a tightly-parameterized model. We take this result as an indication that the model is rich enough to bring meaningfully to the data of emerging economies, and to address our question about the importance of news shocks.

Figure 3 offers a second view of the challenges faced by the no-news model. It reproduces the last two diagonal elements of Figure 2 — the autocovariance functions of the trade balance and debt — overlaid with the same quantities implied from the no-news estimation. While neither model perfectly matches the data, the no-news model falls outside of the empirical range for all four of these points, while the news model falls always inside the confidence bands. The figure thus corroborates the observation from Table 3 that the no-news model struggles to match the overall volatility of these two variables.\(^8\)

One relative weakness of the news model is its ability to match the consumption-output volatility ratio. The reason for this is straightforward: if households can foresee a large portion of productivity shocks, and they have access to capital markets, they will act to smooth potential changes in consumption. Nevertheless, the consumption

\(^7\)Dropping 4 out of 31 observations means these bands correspond roughly to the 90% confidence bands of the empirical distribution.

\(^8\)The baseline model’s shortfall on the variance of the trade balance might appear inconsistent with the relatively close match in Table 3. In fact, this difference reflects the effect of a Jensen’s Inequality term: the model matches the average standard deviation quite well, while it falls somewhat short on the average variance of the trade balance.
volatility observed in the model with news embodies the amplifying force created by occasional “collisions” with the leverage constraint. Thus, although we do not report it here, the addition of the leverage constraint creates a much larger increment in consumption volatility in the model driven largely by news. This finding echoes the result of Basu and Macchiavelli (2014).

4.2 News Shocks and Sudden Stop Events

4.2.1 Baseline Model

Figure 4 displays the dynamics of our baseline estimated model around Sudden Stop events, along with the empirical analogues from actual Sudden Stop events. The dashed black line shows the cross-country medians of different variables three years before and after Sudden Stop events, identified in the model-simulated data exactly as in Figure 1. Our baseline model does a good job in replicating the majority of the observed empirical dynamics of the Sudden Stop events. In the three years prior to the crisis, the economy experiences a concurrent boom in output, consumption, investment, consistent with the data. Output falls just slightly in the period prior to the Sudden Stop, then declines further to around four percent below trend in the event period. The total fall of output, from peak-to-trough, is nearly six percent, largely in line with the data. As a contrast, Mendoza’s calibrated model delivers an overall peak-to-trough change of just slightly over four percent. For consumption, the peak-to-trough fall is over seven percent, which is very close to the data, and is substantially larger than the fall implied by Mendoza (2010)’s model. The model also delivers a quantitatively realistic investment boom prior to the Sudden Stop event, which is about ten percent in the data.

The model is particularly successful at matching the pattern of the trade balance around the period of the Sudden Stop. The trade balance-to-GDP ratio is almost exactly in line with data in the period prior to the event, and the reversal in the Sudden Stop period follows the data remarkably well. The model is also fairly successful in generating debt deleveraging of about five percentage point (as a ratio of output) just in a year after the Sudden Stops, although the initial debt accumulation is somewhat below the levels seen in the data. Finally, the magnitude of the decline in model-implied asset prices from peak-to-trough is somewhat smaller than the data, similar to Mendoza (2010).

9A Sudden Stop is defined as a situation in which the cyclical component of GDP is at least one-and-a-quarter standard deviations below its trend level and the reversal in the trade Balance-to-GDP ratio is at least one-and-a-quarter standard deviations above average. For consecutive periods that fit Sudden Stop criterion, we plot the event figure based only the period with larger trade balance reversal.
The final row of Figure 4 sheds some light on the constellation of shocks leading up to Sudden Stop events. The dashed line in the first panel shows that news about future productivity is very positive in the two periods prior to the Sudden Stop. Meanwhile, the second panel show that Sudden Stops typically occur in periods when current productivity growth is low; a Sudden Stop today is more likely when past expectations have been optimistic—indicating positive news shocks in the period prior to event—and when productivity is low today—corresponding to both bad contemporaneous growth shocks and modestly positive news shocks at precisely at the new-horizon lag. We examine this observation further in Section 4.2.2.

The second panel in the last row of Figure 4 also shows that the median Sudden Stop in the model is preceded by only slightly below-average interest rates, indicating that interest rates play a modest role in driving the increase of the leverage and debt-to-output ratio before a Sudden Stop event. Interest rate increases in the event period, however, play a somewhat more important role in exacerbating the downturn. The last panel of the figure, which plots the implied interest rate premium experienced by the economy in the crisis period, shows that at the same time interest rates are rising, the leverage constraint is binding, a combination that leads to the strong deleveraging and fall in investment depicted in the rows above.

Overall, the patterns around Sudden Stop periods can be summarized as: optimism and borrowing prior to the event, and a combination of bad productivity surprises and rising interest rates during the event. The empirical pattern of rising debt and economic optimism, followed by financial crisis and below trend output strongly resembles the patterns identified by Mian et al. (2017).

Figure 5 compares the event study for the estimated models with and without anticipated shocks, and demonstrates why anticipated shocks play an important role in driving realistic Sudden Stop events. The figure shows the model-implied cross-country medians of Sudden Stops in the estimated model without news shocks, along with our baseline model’s predictions of Sudden Stop dynamics and their empirical counterparts. As in our estimation results, the dynamics of trade-balance-to output and debt-to-output turn out to be key. In particular, the estimated model without news shocks cannot predict an increase in trade deficit and a rise in indebtedness of the country prior to Sudden Stop events. Similarly, at the date of the event, the reversal of trade balance and the size of debt decumulation are both smaller in size compared to the data, despite the fact that events in the no-news model correspond to a bigger collapse in productivity.

In these respects, the predictable component of productivity is important for the
Note: Dashed lines in the first two rows of the figure show the model implied cross country medians of Sudden Stops, identified using the same definition of events as in Figure 1. Events from actual data are shown by solid blue lines. y_{dt}, c_{dt} and i_{dt} denote the HP de-trended log-levels of GDP, consumption and investment, respectively. tby_{dt} and dy denote the de-trended level of the trade balance-to-GDP ratio and absolute level of the debt-to-GDP ratio, respectively.

Figure 4: Sudden Stop Event Study – Model versus Data
model to generate the most well-known characteristic of empirical Sudden Stop dynamics, i.e. a sudden reversal in trade deficit and capital inflows seen in the periods prior to the event. Conditional on the news shocks, agents in our model optimally choose to borrow against their higher future income, increasing their leverage and running trade deficit in good times and bringing them closer to an occasionally binding constraint on their debt holdings.

When good news fails to be realized and/or interest rate jump up, agents are more indebted and therefore more exposed to the non-linear effects of the binding constraint. This is reflected in the bottom-right panel of Figure 5 as a nearly twice as large increase in the implied risk premium in the Sudden Stop event. Hence the title of the paper, as good news is risky for the economy as a whole, since it reduces the agents’ ability to respond to negative shocks that might arrive in the future.

4.2.2 News versus Noise

Under the current specification of our exogenous process, agents’ expectation of future productivity conditional on their observation of the news shock is

\[E[\gamma_{t+H}|\epsilon_t^H] = \epsilon_t^H. \] (16)

Effectively, agents are certain that the news component, \(\epsilon_t^H \), will be realized, but they are completely ignorant of other potential surprises, \(\epsilon_{t+H}^0 \), that may occur \(H \) periods in the future.

A natural alternative formulation for belief formation is to assume that agents receive a noisy signal, \(s_t = \gamma_{t+H} + v_t \), with \(v_t \perp \gamma_{t+H} \), that pertains to the full realization of future productivity. Under this signaling paradigm, the conditional expectation of agents is

\[E[\gamma_{t+H}|s_t] = \kappa s_t, \] (17)

with \(\kappa \equiv \frac{\sigma^2_v}{\sigma^2_t + \sigma^2_v} \). A benefit of this “noise” model of foresight is that the signal noise \(v_t \) is completely orthogonal to fundamental shocks past, present, or future. Thus, the shock \(v_t \) corresponds to the optimism of agents relative to what actually happens: It is a pure shock to beliefs.

Recently, Chahrou and Jurado (2018) have demonstrated that, in fact, these two perspectives on learning are observationally equivalent. We can use their result to back out the implicit “excess optimism” — or noise shock — affecting agents beliefs from our history of news and surprise shocks. Setting equal the expectations in (16) and (17), we
Note: Dashed lines show the model implied cross country medians of Sudden Stops, identified using the same definition of events as in Figure 1. Dotted lines display the cross country medians of Sudden Stops in a re-estimated model without News shocks. Events from actual data are shown by solid blue lines. \(tby_{dt} \) and \(dy \) denote the de-trended level of the trade balance-to-GDP ratio and absolute level of the debt-to-GDP ratio, respectively.

Figure 5: Sudden Stop Event Study – Model without News
have that

\[v_t = \frac{1 - \kappa}{\kappa} \frac{\epsilon_{t+H}^H}{\epsilon_{t+H}^0} - \epsilon_{t+H}^0, \]

(18)

where \(\sigma_v^2 = \sigma_{\text{surp}}^2 (1 + \sigma_{\text{surp}}^2 / \sigma_{\text{news}}^2) \).

In addition to plotting \(\epsilon_{t+H}^H \), the bottom left panel of Figure 4 isolates the noise component embodied in the beliefs of private agents in the run-up to a Sudden Stop. The solid line in this figure shows that the noise component of beliefs, \(v_t \), is elevated precisely three years prior to these events, then returns to zero in periods minus two and minus one. Meanwhile, the news component is roughly zero three periods prior to the event, and strongly positive in the remaining two periods before the event. Taken together, these lines show that optimism about productivity is a pervasive feature in the periods before the Sudden Stop: agents forecast average productivity growth for the crisis period, when it fact it turns out to be below average, while correctly forecasting above-average productivity for subsequent periods.

4.2.3 News as a Risk Shock

To what degree does good news today predict future negative outcomes? Figure 6 plots the probability that a Sudden Stop occurs in future periods as a function of the percentile of the current news shock hitting the economy. The first panel, which plots the probability of an event one period forward, demonstrates a strong upward slope: the constraint is roughly four times more likely to bind tomorrow if the news arriving today is in the 95th percentile relative to the 5th percentile. The second panel of Figure 6 shows that the relationship between news and the constraint binding two periods ahead, in which case a high news shock implies that a Sudden Stop two periods in the future is more than 10 times more likely, compared to a case with a very low news shock! The strong convexity of this figure shows that very high values of the news shock are especially good predictors of Sudden Stop risk, though they remain unlikely events.

5 Robustness

In this section, we examine the robustness of our results. In particular, we are interested in assessing whether our conclusion that news shocks play an important role is robust to the assumptions that we made in our baseline estimation. To do this we, consider a range of experiments in which we adjust the value of one of our baseline parameters and re-estimate the economy. Table 4 displays these cases, along with the associated parameter estimates and the value of the loss function achieved at those points.
Note: The figure plots the probability of a Sudden Stop event occurring one (panel a) or two (panel b) periods hence, conditional on the percentile of the news shock today. The dashed line gives the unconditional probability of an Sudden Stop in the model economy.

Figure 6: Sudden Stop Probabilities

For reference, the first row of Table 4 presents these values for our baseline estimation. The second row of Table 4 displays the estimates values for the model with no news shocks. As shown earlier, this model does not match the data as well as the model with news. This is reflect in a loss function that is substantially larger than the baseline model. While computational limitations make formal hypothesis testing difficult in our case, we believe the bootstrap standard errors, the qualitative differences in moments, and the limitations of the no-news model in matching Sudden Stop event patterns together provide compelling evidence that the model with news fits the data significantly better.

The third and fourth rows of the table consider an estimation in which we change the target for $\bar{\mu}$, the average interest rate premium experienced in the economy. When $\bar{\mu}$ is set to a higher value, the estimated share of news is somewhat higher and conversely it is somewhat lower when $\bar{\mu}$ is set to a lower value. Notice also that β is lower for higher $\bar{\mu}$. These patterns are consistent with our intuition that an important force identifying news in the data is the volatility of debt and the trade balance: when the constraint almost never binds, debt is free to travel across a large span of the state space. Nevertheless, lower $\bar{\mu}$ does not qualitatively change our conclusion that news shocks are important.

The next two rows of the table present estimations of the model in which we consider both a short and longer horizon for news. The data seem to prefer the longer new horizon to some degree, but the difference with respect to our baseline is modest. Most
importantly, the estimated share of news does not seem to depend in a systematic way on this parameter. Although we do not report them, the event study analysis is also extremely similar across these specifications.

The next four rows of the table consider how our results are influenced by our calibration of adjustment cost parameters. As indicated by the value of the loss function in the table, the data strongly prefer a positive value for ϕ_d. Since all of our model somewhat under-predict unconditional volatility of debt and the trade balance, this result is clearly driven by the cross terms in the auto-covariance function. Indeed when ϕ_d is somewhat higher than our baseline value, the loss improves slightly while the estimated volatility of news shocks goes up. The table also shows that our results are largely robust to our choice of ϕ_h as well.

We next examine the importance of our assumption about χ. Once again, it appears that the role of news is relatively unaffected by this choice and, although we do not report it, the event study is quite similar to our baseline model. The loss function indicates, however, that the data do prefer to some degree a higher value for this parameter. We have maintained our baseline choice of χ in order to ensure the reader that none of our results rely on choosing an implausibly large value for this parameter.

In the following row of the table, we reestimate the model after returning the labor detrending specification of García-Cicco et al. (2010). This assuming clearly matters for the fit of the model, but not for our conclusion regarding news shows, nor in a significant way for the other parameter estimates.

In the next row, we re-estimate the economy using only baseline weights in the GMM weighting matrix, V. We once again find that this decision does not affect our results in an important way, although the estimate news share is slightly smaller.

In the penultimate row of the table, we explore the important of our assumption that $\rho_x = 0$. We have maintained this assumption so far in order to isolate the effects of foresight, since autocorrelated growth shocks imply some forecastability of productivity growth. Nevertheless, this does put a restriction on the observed process for growth that could be important. We find, however, that it does not alter our results in a qualitative way.

Altogether, we believe these results indicate that our conclusion is quite robust to the details of our calibration choices. Combined with the statistical significance we found in our bootstrap procedure, we take this as strong evidence that the data are best matched with an economy driven in large part by forecastable shocks to productivity.
<table>
<thead>
<tr>
<th></th>
<th>ϕ_d</th>
<th>κ</th>
<th>β</th>
<th>σ_n</th>
<th>σ_s</th>
<th>ρ_x</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Model</td>
<td>1.505</td>
<td>0.446</td>
<td>0.915</td>
<td>0.039</td>
<td>0.035</td>
<td>-</td>
<td>1112</td>
</tr>
<tr>
<td>Model w/o News</td>
<td>1.579</td>
<td>0.377</td>
<td>0.915</td>
<td>0.000</td>
<td>0.047</td>
<td>-</td>
<td>1259</td>
</tr>
<tr>
<td>Baseline Model w/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{\mu} = .015$</td>
<td>1.398</td>
<td>0.431</td>
<td>0.911</td>
<td>0.043</td>
<td>0.032</td>
<td>-</td>
<td>1203</td>
</tr>
<tr>
<td>$\bar{\mu} = .005$</td>
<td>1.941</td>
<td>0.478</td>
<td>0.919</td>
<td>0.032</td>
<td>0.039</td>
<td>-</td>
<td>1016</td>
</tr>
<tr>
<td>$H = 2$</td>
<td>1.713</td>
<td>0.422</td>
<td>0.915</td>
<td>0.036</td>
<td>0.037</td>
<td>-</td>
<td>1150</td>
</tr>
<tr>
<td>$H = 4$</td>
<td>1.662</td>
<td>0.454</td>
<td>0.915</td>
<td>0.037</td>
<td>0.037</td>
<td>-</td>
<td>1082</td>
</tr>
<tr>
<td>$\phi_d = 0$</td>
<td>1.564</td>
<td>0.410</td>
<td>0.917</td>
<td>0.023</td>
<td>0.034</td>
<td>-</td>
<td>1385</td>
</tr>
<tr>
<td>$\phi_d = 1$</td>
<td>1.544</td>
<td>0.449</td>
<td>0.914</td>
<td>0.044</td>
<td>0.037</td>
<td>-</td>
<td>1050</td>
</tr>
<tr>
<td>$\phi_h = 0$</td>
<td>1.181</td>
<td>0.426</td>
<td>0.917</td>
<td>0.034</td>
<td>0.032</td>
<td>-</td>
<td>1136</td>
</tr>
<tr>
<td>$\phi_h = 2$</td>
<td>1.456</td>
<td>0.441</td>
<td>0.915</td>
<td>0.037</td>
<td>0.038</td>
<td>-</td>
<td>1145</td>
</tr>
<tr>
<td>$\chi = 0$</td>
<td>1.472</td>
<td>0.411</td>
<td>0.915</td>
<td>0.037</td>
<td>0.034</td>
<td>-</td>
<td>1173</td>
</tr>
<tr>
<td>$\chi = 0.6$</td>
<td>2.132</td>
<td>0.475</td>
<td>0.915</td>
<td>0.040</td>
<td>0.040</td>
<td>-</td>
<td>1025</td>
</tr>
<tr>
<td>$\varphi = 0.0$</td>
<td>2.233</td>
<td>0.414</td>
<td>0.919</td>
<td>0.042</td>
<td>0.041</td>
<td>-</td>
<td>1608</td>
</tr>
<tr>
<td>no weights</td>
<td>1.486</td>
<td>0.419</td>
<td>0.917</td>
<td>0.031</td>
<td>0.034</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ρ_x estimated</td>
<td>1.616</td>
<td>0.443</td>
<td>0.915</td>
<td>0.030</td>
<td>0.034</td>
<td>0.163</td>
<td>1074</td>
</tr>
</tbody>
</table>
6 Conclusions

This paper demonstrates that shocks to expectations about future productivity growth are a good candidate for explaining the observed patterns in emerging economies of concurrent growth and leverage expansion followed by occasional reversals in both leverage and real economic variables. The presence of an occasionally binding collateral constraint amplifies these reversals substantially, yielding the characteristic features of Sudden Stops. The simple estimated model presented here does a remarkably good job at matching the empirical stylized facts about Suddens Stops quantitatively. Moreover, the arrival of good news leads to a high-probability of “tail” outcomes, including large decreases in consumption. The presence of externalities in this context, and consequently the insufficiently strong precautionary motives faced by agents, suggests the possibility that the information contained in news shocks could, in fact, be detrimental to welfare. We plan to examine this possibility in future work.

References

A Data Appendix

A.1 Definition of Sudden Stops

We collect annual data for 31 emerging market economies (EME) from 1980 to 2015. We restrict our attention to the sample of EMEs included in the analysis of Calvo et al. (2006) that filter out countries based on their level of integration with the global bond markets. The complete list of EMEs includes Algeria, Argentina, Brazil, Bulgaria, Cote d’Ivoire, Chile, Colombia, Croatia, Czech Republic, Dominican Republic, Ecuador, El Salvador, Hungary, Indonesia, Lebanon, Malaysia, Mexico, Morocco, Panama, Peru, Philippines, Poland, Russia, South Africa, South Korea, Thailand, Tunisia, Turkey, Ukraine, Uruguay, and Venezuela.

Our data source, unless otherwise indicated, is World Bank’s World Development Indicators. All data are in annual frequency. Data for GDP, private consumption and investment are expressed in constant local currency units (LCU) and converted into per capita terms using total population data. The trade balance-to-GDP ratio is calculated as the ratio of external balance on goods and services to GDP (both of which are expressed in current LCUs). External Debt Stock-to-GDP ratio is calculated as the ratio of total external debt stock of a country to its GDP (both of them are expressed in current US dollar). Our dataset does not include a measure of Tobin’s Q, so the empirical line plotted in the figures is derived from Mendoza’s (2010) calculations, with flat extrapolation for the periods not covered by his event study. Finally, EMBI data come from Bloomberg, and the US 3-month Tbill and the US GDP deflator data come from the Fred database of St. Louis Fed.

Consistent with Calvo et al. (2006), a Sudden Stop event in our paper is identified as a situation in which the cyclical component of GDP is at least one-and-a-quarter standard deviations below its trend level and the reversal in the trade Balance-to-GDP ratio is at least one-and-a-quarter standard deviations above average. The same definition of Sudden Stops is used to produce actual and theoretical dynamics of Sudden Stop events. Mendoza (2010) takes Sudden Stop dates as given from Calvo et al. (2006). The actual dynamics of Sudden Stop events presented in Figure 1 of Mendoza (2010) and Figure 1 in this paper are fairly similar.11

10 More precisely, Calvo et al. (2006) sample of EMEs is composed of those countries tracked by JP Morgan to construct its global Emerging Market Bond Index.

11 Calvo et al. (2006) identifies thirty-three Systemic Sudden Stop events for the 1980-2004 period. They define systemic Sudden Stop events as episodes with mild and large output collapses that coincide with large spikes in the EMBI spread and large reversals in capital flows.

A.2 Interest Rate Data and Estimation

The world interest rate that countries in our sample can borrow in the international financial markets, \(R^*_t \), is measured as the sum of J. P. Morgan’s EMBI + sovereign spread and the U.S. real interest rate. The latter is calculated as the 3-month gross U.S. Treasury bill rate deflated using a measure of the expected U.S. inflation (see Schmitt-Grohé and Uribe (2016) for details of the calculation of the expected U.S. inflation). The stochastic process for the country interest rate, as shown in equation (8), is estimated separately for each country in our sample. The median of the estimated parameters across the countries is used to fix values for the serial correlation, \(\rho_r = 0.75 \), and for the standard deviation of the error term, \(\sigma(\epsilon_{R,t}) = 0.0126 \) before we perform the full simulated method of moments estimation procedure, which we describe in Section 3.3.

B Optimality Conditions

Let the multipliers on the constraints in equation (3) through (4) be given by \(\lambda_t, \lambda_t q_t, \) and \(\lambda_t \mu_t \) respectively. After imposing our functional forms for preferences and production, the first order conditions of the representative firm-household problem are

\[
\lambda_t = \left[c_t - \theta \omega^{-1} \bar{X}_{t-1} \bar{h}_t^\omega \right]^{-\sigma}
\]
\[
w_t = \theta \bar{X}_{t-1} h_t^\omega^{-1}
\]
\[
\frac{1 - \mu_t}{R_t} = \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \left[1 - \Phi'_d \left(\frac{\Delta d_{t+2}}{y_{t+1}} \right) \right] + \Phi'_d \left(\frac{\Delta d_{t+1}}{y_t} \right)
\]
\[
w_t = (1 - \alpha) \left(\frac{k_t}{h_t} \right)^\alpha X_t^{1-\alpha} - X_t \Phi'_h \left(\frac{h_t}{h_t-1} \right) - \chi(R_t - 1)w_t
\]
\[
+ \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \left[X_t \left(\frac{h_{t+1}}{h_t} \right) \Phi'_h \left(\frac{h_{t+1}}{h_t} \right) - X_t \Phi_h \left(\frac{h_{t+1}}{h_t} \right) \right]
\]
\[
q_t = 1 + \Phi'_k \left(\frac{i_t}{k_t} \right)
\]
\[
q_t(1 - \mu_t \kappa) = \beta \mathbf{E}_t \frac{\lambda_{t+1}}{\lambda_t} \left[\alpha \left(\frac{k_{t+1}}{X_{t+1} h_{t+1}} \right)^{\alpha-1} + (1 - \delta) q_{t+1} + \Phi'_k \left(\frac{i_{t+1}}{k_{t+1}} \right) \frac{i_{t+1}}{k_{t+1}} - \Phi_k \left(\frac{i_{t+1}}{k_{t+1}} \right) \right]
\]

(24)

the constraints in equations (3) - (4), as well as the complementary slackness conditions

\[
\mu_t \geq 0 \quad \text{and} \quad
\mu_t \left(\kappa - \frac{d_{t+1}}{R_t} + \chi R_t (w_t h_t) \right) = 0.
\]

(25)

C Stationary Equilibrium and Model Steady-state

Let \(\hat{z}_t \equiv z_t / X_{t-1} \), for \(z_t \in \{c_t, k_t, w_t, i_t, d_t\} \), and let \(\hat{\lambda}_t \equiv \frac{\lambda_t}{X_{t-1}} \). Then the stationary first order conditions of the economy, excluding those of the exogenous shock processes, are the following:

\[
\hat{\lambda}_t = \left[\hat{c}_t - \theta \omega^{-1} \gamma_{t-1}^{\frac{\sigma}{\sigma - 1}} h_t \hat{e}^\omega \right]^{-\sigma}
\]

(26)

\[
\hat{w}_t = \theta \gamma_{t-1}^{\frac{\sigma}{\sigma - 1}} h_t^{\omega - 1}
\]

(27)

\[
\frac{(1 - \mu_t)}{R_t} = \beta \mathbf{E}_t \frac{\hat{\lambda}_{t+1}}{\hat{\lambda}_t} \gamma_t^{-\sigma} \left[1 - \phi_d \left(\frac{\gamma_{t+1} \tilde{d}_{t+1} - \tilde{d}_t}{\tilde{y}_t} - (\gamma - 1) \frac{d}{y} \right) \right]
\]

\[+ \phi_d \left(\frac{\gamma_t \tilde{d}_{t+1} - \tilde{d}_t}{\tilde{y}_t} - (\gamma - 1) \frac{d}{y} \right) \]

(28)

\[
\hat{w}_t = (1 - \alpha) \left(\frac{k_t}{h_t} \right)^\alpha \gamma_t^{1-\alpha} - \phi_h \left(\frac{h_t}{h_{t-1}} - 1 \right) - \chi (R_t - 1) w_t
\]

\[+ \beta \mathbf{E}_t \frac{\hat{\lambda}_{t+1}}{\hat{\lambda}_t} \gamma_t^{1-\sigma} \left[\phi_h \left(\frac{h_{t+1}}{h_t} - 1 \right) \frac{h_{t+1}}{h_t} - \frac{\phi_h}{2} \left(\frac{h_{t+1}}{h_t} - 1 \right)^2 \right] \]

(29)

\[
q_t = 1 + \phi \left(\frac{\hat{i}_t}{k_t} - \delta \right)
\]

(30)

\[
q_t(1 - \mu_t \kappa) = \beta \mathbf{E}_t \frac{\hat{\lambda}_{t+1}}{\hat{\lambda}_t} \gamma_t^{-\sigma} \left[\alpha \left(\frac{k_{t+1}}{\gamma_{t+1} h_{t+1}} \right)^{\alpha-1} + (1 - \delta) q_{t+1} \right]
\]

\[+ \phi_k \left(\frac{\gamma_t \hat{i}_{t+1} - \delta}{k_{t+1}} \right) \frac{\hat{i}_{t+1}}{k_{t+1}} - \frac{\phi_k}{2} \left(\frac{\gamma_t \hat{i}_{t+1} - \delta}{k_{t+1}} \right)^2 \]

(31)

\[
\frac{\gamma_t \tilde{d}_{t+1}}{R_t} = \tilde{d}_t + \hat{c}_t + \hat{i}_t + \chi \hat{w}_t h_t (R_t - 1) - \hat{k}_t^{\alpha} \left(\gamma_t h_t \right)^{1-\alpha}
\]

(32)

\[
\gamma_t = \gamma_{t-1}^{\frac{\sigma}{\sigma - 1}} \gamma_t^{1-\sigma}
\]

(33)
as well as the complementary slackness conditions $\mu_t \geq 0$ and

$$
\mu_t \left(\kappa - \frac{\bar{d}_{t+1}}{R_t} + \chi R_t \bar{w}_t \bar{h}_t \right) = 0,
$$

(34)

and the equilibrium definition $\bar{w}_t = \theta h_t^{\omega_r - 1}$.

Linearization requires that we solve the for non-stochastic steady of the economy. To do this, we assume values for \bar{h} and d/y, and then find the values of θ and long-run debt that are consistent with our assumptions. Rearranging equation (31) and imposing steady-state implies that

$$
k/t = \left[\frac{\gamma}{\beta} - 1 + \delta \right] \alpha_{\bar{h}_t}^{\alpha_{\bar{h}_t} - 1}
$$

(35)

Given our assumption for \bar{h}, the long run capital level follows immediately. From there, the resource constraint and the production function can be used to determine consumption, and equation (27) can be solved for θ.

D Solution Method

Before solving the model, we eliminate variables, reducing equation (26) - (34) to three expectational equations and the complementary slackness condition on leverage. The minimum state representation of our economy is given by

$$
x_t = [k_t, d_t, h_{t-1}, R_t^*, \bar{w}_t, \bar{h}_t, \epsilon_{t-H}^H, ..., \epsilon_t^H].
$$

(36)

Collect a spanning set of basis functions (specified later) of the states in the vector, $s_t(x_t)$. Our solution procedure centers around approximating the three expectations terms

$$
\tilde{E}_t^1 \equiv \beta E_t \bar{\lambda}_{t+1} \left[1 - \phi_d \left(\frac{\gamma_{t+1} \bar{d}_{t+2} - \bar{d}_{t+1}}{\bar{y}_{t+1}} - (\gamma - 1) \frac{d_t}{y} \right) \right]
$$

(37)

$$
\tilde{E}_t^2 \equiv \beta E_t \bar{\lambda}_{t+1} \left[\alpha \left(\frac{\bar{k}_{t+1}}{\gamma_{t+1} \bar{h}_{t+1}} \right)^{\alpha_{\bar{k}_t} - 1} + (1 - \delta) \bar{q}_{t+1}

+ \phi_k \left(\frac{\bar{\gamma}_{t+1}}{\bar{k}_{t+1}} - \delta \right) \frac{\bar{\gamma}_{t+1}}{\bar{k}_{t+1}} - \phi_k \left(\frac{\bar{\gamma}_{t+1}}{\bar{k}_{t+1}} - \delta \right)^2 \right]
$$

(38)

$$
\tilde{E}_t^3 \equiv \beta E_t \bar{\lambda}_{t+1} \frac{\bar{\lambda}_{t+1}}{\bar{\lambda}_t} \left[\phi_h \left(\frac{\bar{h}_{t+1}}{\bar{h}_t} - 1 \right) \frac{\bar{h}_{t+1}}{\bar{h}_t} - \phi_h \left(\frac{\bar{h}_{t+1}}{\bar{h}_t} - 1 \right)^2 \right]
$$

(39)
with parametric functions \(g^1(s_t), g^2(s_t), \) and \(g^3(s_t), \) respectively. Given good approximating functions \(g^i(s_t) \) and current states, a good non-linear solver can then be used to generate a corresponding history for endogenous variables, \(v_t(x_t) \), at any point in the state space. Note that included in the vector \(v_t(x_t) \) are jump variables (e.g. \(c_t \)) and future-period state-variables (e.g. \(k_{t+1} \)).

To arrive at good approximating functions \(g^i(s_t) \), we first conjecture an initial relationship

\[
\hat{E}_t^i \approx \beta^i s_t
\]

based on a linearized solution to the model economy. We then simulate a history of normal shocks, \(\{\epsilon_t\}, t \in [1, 2, 3..., 5000] \) using a fixed starting point in the random number generator. For each point \(t \), we conjecture a set of endogenous outcomes for point in time \(t \) again based on a linearization of the economy.

At this point, a standard parameterized expectations approach would solve the model equations given the conjectured approximating relationship in (40), to arrive a realized history \(\{v_t\} \). Given this history, realized analogues of (37)-(39) can be computed, and updated values for \(\beta^i \) computed by regressing time \(t+1 \) realizations of these values on \(s_t \). The procedure is then repeated until convergence, so that an approximate equilibrium is a fixed point of the mapping

\[
\{v_t\} = \mathcal{T}^\infty(\{v_t\}),
\]

where \(\mathcal{T}^\infty \) captures the solution and updating procedure. The meaning of the \(\infty \) be superscript will clear momentarily.

Our procedure extends this basic procedure in a few respects. First, rather than using the approximate relationship in (40) to directly compute time \(t \) expectations, we explicitly solve the economy forward. Starting from each \(t \), we consider several potential futures, each characterized by potential realizations of shocks, \(\epsilon_{t'} \). We iterate forward in the future for a finite \(\tau \) periods, finally using the relationship in (40) to terminate the recursion at \(\tau+1 \) periods. For the values of \(\{\epsilon_{t'}\} \), we use the standard multivariate normal Gaussian-Hermite quadrature points. In our baseline, we use two points per shock, so that for each point in the initial simulation there are \(n' = 8 \) potential continuations, i.e. if \(\tau = 1 \), we consider a total of 40,000 continuations for our original sample of 5,000 periods. We considered using more quadrature points but found that did not effect on our simulations. We then sum these potential futures using the Gaussian-Hermite quadrature weights, to arrive at time \(t \) expectations for the terms in (37)-(39). Notice that when \(\tau = 0 \), this extended method collapses into the basic parameterized expectations method described above.
This extended approach has two benefits. First, it allows us to compute expectation approximations that explicitly account for the non-linearities associated with realizations at horizons 1 through \(\tau \), effectively delaying use of the parameterized expectation functions towards the future where they have smaller impact on current actions. Second, we can use the computed expectations, which have already integrated out future randomness, to compute a more precise estimate of the approximation coefficients, \(\{ \beta^i \} \), since there is no longer any error associated with random future realizations. In experiments, we found that this approach with \(\tau = 1 \) leads to significantly higher accuracy in our solution, as judged by an extremely accurate (and much slower!) grid based solution method which we have applied to more simple version of the model. Setting \(\tau > 1 \) did not lead to significant additional improvements.

One important detail in this procedure is the approximating basis function implicit in our definition of \(s_t(x_t) \). We considered approximating basis (i.e. extended state space) that include the terms in \(x_t \) plus all second and third-order cross terms created by multiplying elements of \(x_t \). The full set of cross terms leads to ill-conditioned regressions as many of these variables are nearly collinear. In our baseline model, we therefore use a subset of 18 of these higher-order terms. We selected these terms by applying a “forward-fit” algorithm to an initial simulation of the model. The procedure gradually increases the set of regressors, taking the variable with the most additional explanatory power, until additional variables add negligible explanatory power. The procedure did not select any 3\(^{rd}\)-order terms. After estimating, we resolved the model at our baseline parameters using the larger set of regressors and found no change in the equilibrium dynamics of the model.

A second important detail involves our approach to solving equations (26) - (34), taking as given our parameterization of expectations. Standard descriptions of this algorithm involve fully solving these equations before revising the expectation parameters. But this requires hundreds or thousands of evaluations of the model equations per sample period, per iteration on the expectations of agents. Thus, rather than fully solving the model equations before updating our parameterized expectation functions, we take only a single Newton-Raphson step towards the solution for each point in the simulation before updating our expectation parameters. This adjustment increases the speed of our solution procedure by at least two orders of magnitude and, equally importantly, delivers far more stable performance as it ensure that beliefs and actions evolve away from their initial point in tandem.
Hence, irrespective of \(\tau \), we advocate solving a fixed point of the mapping

\[
\{v_t\} = T^N(\{v_t\}),
\]

where \(N \) (in our case \(N = 1 \)) captures the fact that we do not fully solve model equations at each iteration on beliefs. A fixed point of \(T^N \) is guaranteed to be a fixed point of \(T^\infty \) so long as equation residuals at that point are zero, which we always check once the algorithm has converged.